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1. Introduction

Many physical systems are described by fields propagating in a space with lower-dimensional

defects, including, in particular, boundaries. These infinitely thin defects are typically ide-

alizations of localized physical backgrounds with finite size and a certain substructure.

The field theory should then be regarded as an effective theory valid at low energies, such

that the substructure of the defects is not resolved. An implicit assumption underlying the

simplification of using zero-width (“thin”) defects is that at low energies all observables are

fairly insensitive to ultraviolet details. As we will see, this is not always the case: there are

examples in which the details of the defects do not decouple but filter into the low-energy

observables. Nevertheless, we will argue that in all cases an effective field theory with

thin defects can describe low-energy physics to any required precision. The only difference

between the decoupling and the non-decoupling scenarios is that in the second case (part

of) the substructure of the brane is described by relevant operators.

On the other hand, it turns out that perturbative calculations in the presence of thin

defects are often plagued with extra divergences that arise in the limit of zero thickness. In

some cases they appear already at the classical level. These divergences signal a breakdown
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of the field theory at scales where the finite thickness of the defects cannot be neglected.

They must be renormalized away, and the information about the microscopic structure of

the defects is then encoded in the renormalized coefficients of the different operators of the

theory.

In this paper we propose a simple renormalization prescription to deal with the di-

vergences associated to thin defects (thin-brane divergences), and study the effect of bulk

and localized higher-order terms. It turns out that, in our scheme, the most singular (or-

thogonal) localized kinetic terms can be completely eliminated via field redefinitions. This

justifies the conventional phenomenological approach of ignoring them. Furthermore, we

check that the results obtained in the effective framework agree with those given by a

particular (deconstructed) microscopic theory. The latter will be described in detail in a

forthcoming publication [1].

The paper is organized as follows. In section 2, we argue that effective theories with

infinitely thin defects are a good description of more fundamental theories, in which the

defects may have some internal structure. We also introduce the particular setup to be

studied in the following sections. In section 3, we describe our renormalization scheme and

show how it can be used to eliminate some operators to all orders. In section 4 we calculate,

to second order in the derivative expansion, the spectrum and wave functions of fermions,

scalars and gauge bosons for a general effective theory. Section 5 contains the matching

to the deconstructed models. Section 6 is devoted to a particular class of operators, which

are ambiguous in the limit of zero brane width. We present our conclusions in section 7.

Finally, in appendix A we give an explicit regularization which realizes our renormalization

prescription and in appendix B we give details of an extra test of our prescription, five-

dimensional Green-Schwarz mechanism in the vector formulation.

2. Effective theories with thin branes

In the absence of defects, and under very general assumptions, any fundamental theory

can be described, at energies below some scale Λ0, by an effective quantum field theory for

the light degrees of freedom [2, 3]. This Λ0 is related to some characteristic dimensionful

parameter of the fundamental theory; it can also represent a scale at which the effective

theory becomes strongly coupled. The subscript 0 is used to distinguish this scale from the

cutoff of the effective theory with defects. The effective Lagrangian can be expanded in an

infinite series of local operators, organized in powers of E/Λ0 and mi/Λ0, where E is the

energy and mi represent possible mass scales in the theory, smaller than Λ0. Of course,

at energies below a given mi one could describe physics by a new effective theory with

Λ′
0 = mi. In a Wilsonian framework, the scale Λ0 represents some cutoff of external and

virtual momenta, such that the effective theory cannot resolve distances smaller than Λ−1
0 .

In practice, however, it is more convenient to work with effective theories renormalized in

a mass-independent scheme, such as dimensional regularization with minimal subtraction.

The main reason is that this prevents divergent loop corrections from enhancing the effect of

higher-order operators, so that operators of order greater than a given n do not contribute

to observables to order Λ−n
0 . Another reason is that preserving symmetries in a Wilsonian
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context is more involved. In a mass-independent scheme, the scale Λ0 only appears in the

effective theory in the explicit inverse powers in front of the different operators.

Consider now a generic “fundamental” theory defined in some flat space that contains

defects extended in D infinite space-time dimensions, with a characteristic thickness ε0,

much smaller than the size of the transverse dimensions L. Furthermore, we restrict to

plane defects with vanishing extrinsic curvature. These requirements are not essential but

simplify the discussion. The defects can have different miscroscopic origins: surfaces of

materials, solitonic configurations, orientifold planes, D-branes, intersections of D-branes,

etc. In the following we will generically call these objects “branes”. For simplicity, we

assume that all other scales characterizing the brane (such as possible dimensionful cou-

plings between a localized background and the fluctuating fields) are of the order of ε−1
0

as well. Because Poincaré invariance in the transverse directions is broken, the corre-

sponding momenta are no longer good quantum numbers. It is then convenient to work

in position space for the transverse coordinates, and to speak of derivatives, rather than

energies. D-momenta and Kaluza-Klein (KK) masses can also label the eigenstates of the

free Hamiltonian, but they are not adequate to organize local operators. We assume that,

without branes, an effective description exists in which the cutoff Λ0 is larger than the

compactification scale L−1. The latter can then be thought of as one of the low scales mi.

When the branes are introduced, we can distinguish two physical situations, according

to the relative sizes of Λ0 and ε−1
0 . If ε−1

0 < Λ0, it is possible in principle to describe

physics at energies below Λ0 by an effective field theory incorporating a field-theoretical

representation of the branes at scales between ε−1
0 and Λ0. One example of this situation

is the calculation of zero-point (Casimir) energies of quantum electromagnetic fields in

a conducting cavity or in the presence of conducting plates, and toy models related to

this situation.1 If, instead, ε−1
0 & Λ0 then the microscopic structure of the branes lies

beyond the reach of the effective field theory, and can only be described at the level of the

fundamental theory. This situation is implicit in many field-theoretical models in extra

dimensions. In the example of fundamental theory we will consider below, deconstruction,

the scale Λ0 (which is identified with the inverse of the lattice spacing) acts as a hard cutoff

in position space, which smears the brane over an effective size Λ−1
0 .

In all cases the theory can be described at energies lower than Λ = min{Λ0, ε
−1
0 } by an

effective field theory with cutoff Λ. 2 Note that if we send the physical scale ε−1
0 to infinity

1See [4] for a discussion of effective theories and matching in the context of the Casimir effect, and [5] for

calculations with “fat” branes. Note that the localized energy density is a relevant operator in the effective

theory below Λ = ε−1
0 (with thin branes represented by boundary conditions). Its coefficient, which is

naturally controlled by the scale ε−1

0 , is an input parameter to be fixed by experiment or by matching with

the theory with finite ε0.
2When ε−1

0 < Λ0 we could use separate cutoffs for brane and bulk operators: Λbrane = ε−1

0 , Λbulk = Λ0.

This is analogous to the position-dependent cutoff that is used in warped geometries. Locality of the

ultraviolet divergences implies that coefficients of brane operators do not appear in the running of the

coefficients of bulk operators. The converse does not necessarily hold, but the suppressions by powers of

1/Λbrane are not destabilized by the addition of powers of 1/Λbulk. Nevertheless we stick to the effective

theory with a single cutoff Λ, although additional suppressions by powers of 1/(ε0Λ0) could be expected for

dimensionless bulk couplings.
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the branes do not disappear, but become infinitely thin. Correspondingly, the effective

theory lives in a space with “effective” branes of size ε ≤ Λ−1 < L. We stress that the

auxiliary thickness ε of the branes in the effective theory is not necessarily related to the

physical thickness ε0 of the branes in the fundamental theory (which in some scenarios is

represented by Λ). Actually, at the end of the day we will send ε → 0 to describe theories

with finite ε0.

One important feature of theories with branes is the appearance of localized divergent

radiative corrections, which implies that brane localized terms must be included in the

theory for multiplicative renormalizability [6 – 8]. In other words, putting them to zero

is not stable under renormalization group evolution. These brane operators can also be

present at the scale Λ, for instance if they are radiatively generated by heavy degrees

of freedom which have been integrated out. Operators with the same field content are

organized according to their canonical dimension (i.e. the number of derivatives and delta

functions). This corresponds to an expansion in 1/Λ. In the Wilsonian framework, because

the cutoff makes the theory insensitive to distances smaller than Λ−1, we can use effective

branes of any shape and size ε we like, as long as the integrated features of the original

branes over a region of size Λ−1 are preserved. If we knew the fundamental theory,

the process of integrating out the degrees of freedom higher than Λ would naturally give

ε ≈ Λ−1. On the other hand, in a mass-independent scheme the theory will be sensitive to

the auxiliary scale ε−1. In this framework we would like to keep Λ as the only dimensionful

scale (outside loop logarithms), and eliminate the auxiliary brane thickness by taking

the thin-brane limit ε → 0. However, this is not straightforward, for this limit can be

divergent (after subtraction of the usual divergences of correlators at coincident points).

The divergences arise because in the presence of certain brane terms, the fields (even for

the lowest KK modes) fluctuate very strongly near the branes, in such a way that the local

value of the derivatives of the fields is of order ε−1. Hence, perturbativity in ∂/Λ is spoiled.

The solution is, as usual in field theory, to apply a renormalization procedure to eliminate

the dependence on ε. The limit ε → 0 can then be safely taken. Furthermore, to keep the

virtues of the “quantum” mass-independent scheme, we should use a mass-independent

scheme also for the thin-brane divergences.

This kind of effective theory can in principle describe any sensible fundamental theory

defined in manifolds with branes. These can be classified into universality classes, with

theories within the same class being described by the same effective theory at lowest order.

Sometimes a small perturbation in the ultraviolet of the fundamental theory can turn out

to be relevant and bring the theory to a different universality class. We will show examples

of this situation below.

In this paper we are mainly interested in field theories in more than four dimensions

with branes. Extra-dimensional quantum field theories are non-renormalizable, so they

are necessarily effective theories, even in the absence of branes. Because of the power-law

running of the couplings, the cutoff Λ0 cannot be much larger than the compactification

scale L−1 if we are to stay in a perturbative regime and, at the same time, reproduce

the observed gauge couplings. On the other hand, the substructure of the branes is often

assumed to be described by some fundamental theory such as string theory. In this case,
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they belong to the class with ε−1
0 & Λ0 = Λ. In extra dimensions, non-renormalizability

implies that an infinite number of localized operators are generated. At leading order in

the low-energy expansion they consist of localized mass terms, kinetic terms and marginal

interactions [8, 9]. Some of these brane terms, in turn, give rise to singularities and a loss of

perturbativity in the thin-brane limit, unless they are subtracted. Such a renormalization

has been proposed and studied in [10] for branes of codimension 2 with localized mass

terms, and in [11, 12] for branes of codimension 1 with localized derivative (kinetic) terms.

This renormalization is usually dubbed “classical” because it is required already at tree

level in the presence of tree-level brane terms.

Our purpose here is to study the effect of brane and bulk operators to second order in

perturbation theory (up to Λ−2), and to give a simple renormalization prescription, which

can be used in phenomenological calculations with thin branes. Furthermore, we want

to check that the results obtained with this prescription are physical, in the sense that

they agree with the ones given by a more fundamental theory incorporating a microscopic

description of the branes. We consider theories with plane parallel branes of codimension 1

and, for definiteness, restrict to the orbifold M4 × S1/Z2, which we parametrize (in the

“upstairs” picture) by xµ, µ = 0, 1, . . . , 3 and y = x5 ∈ (−πR, πR]. Our branes are the fixed

points of the Z2 action, located at y = 0 and y = πR. Therefore, they are non-dynamical

objects and we do not need to include their fluctuations (“branons”, see [13 – 15]) in the

effective theory. We study the free theory, which is already non-trivial, and concentrate on

the kinetic terms, which are the most relevant in phenomenology. We give a general basis of

independent operators which, in principle, can describe to a certain order any ultraviolet

completion with the assumed symmetries in this sector. Then, we study the impact of

these operators on the KK spectrum in a perturbative calculation. Finally, we match the

general (free) effective theory to a specific completion: deconstructed orbifolds [1]. The

fact that this matching is possible is a check of the validity of the effective framework, of

classical renormalization, and of our particular prescription. The description of the free

part of brane fields is straightforward in flat space for plane branes, so we will focus mostly

on bulk fields.3 We choose to work in the parent theory with fields that have well-defined

orbifold parity, rather than in the interval with boundary conditions.

3. Renormalization

We want an effective theory with branes of vanishing width, i.e. , with the brane-localized

terms proportional to Dirac delta functions. We will work formally with these represen-

tations whenever possible, and only resort to an intermediate regularization of the delta

functions to check the results in section 6. Since products of delta functions appear in per-

turbation theory, even classically, a subtraction procedure is in order. We propose a simple

prescription to perform the subtractions: define all products of delta functions or their

3Brane fields contribute to brane-localized free terms for bulk fields via quantum corrections. At the

classical level, they can contribute as well if there is mass or kinetic mixing with the bulk fields. Actually, we

will consider below one case in which a brane-bulk fermionic mass mixing has dramatic effects. Elsewhere,

diagonal mass and kinetic matrices are assumed.
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derivatives as identically zero. This applies to products of deltas both in the action and

in the calculations of amplitudes (or KK reduction), and determines a mass-independent

renormalization scheme, which we call analytic renormalization. The reason for the

term “analytic” is that, in particular, this prescription follows automatically from an ana-

lytic regularization involving (extensions of) zeta-functions, which we describe in appendix

A. In practice, however, no explicit realization is needed in our calculations for plane branes

of codimension 1, where the thin-brane divergences are power-like. Nevertheless, as we

discuss below, an explicit regularization could be useful to deal with finite ambiguous con-

tributions, which appear also in the plane case. Moreover, logarithmic divergences appear

in codimension 2 [10, 16, 17], and when the branes are curved, extra localized terms propor-

tional to their extrinsic curvature arise after careful regularization of the singularities [18].

Therefore, a refinement of analytic renormalization (may be some form of differential renor-

malization [19]), or an explicit (analytic) regularization, is required in these and other more

general situations. Our prescription (and the resulting renormalization scheme) presents

several advantages:

• It is extremely simple, as no intermediate regularization of the Dirac deltas is neces-

sary and no explicit counterterms have to be computed.

• It does not introduce any dimensionful regulator which could interfere with the ex-

pansion in inverse powers of Λ.

• As we show below, it allows the elimination of some brane terms via field redefinitions.

• It preserves supersymmetry, at least in known examples.

Observe that even if the thin-brane divergences signal a dependence of ultraviolet details,

we can cancel them completely since the relevant information is encoded in the finite coeffi-

cients of operators with at most a single delta function. Putting all products of (derivatives

of) deltas to zero is equivalent to exactly cancelling these products by counterterms in the

renormalized action, as proposed in [12], but it is simpler, as many terms in amplitudes

or in the action can be discarded from the beginning. For instance, and in relation to

the last point, it is known that in supersymmetric theories with branes higher-order terms

with products of delta functions have to be included in the action to preserve supersym-

metry [20, 12]. But if analytic renormalization is used in all calculations, these terms can

(and should) be omitted. This is possible because products of deltas are also renormalized

to zero in the on-shell supersymmetry transformations. In particular, the free action for a

supersymmetric boson with brane terms, which includes an infinite series of higher-order

terms [12], is equal to the näıve one after renormalization. This means that the latter,

when combined with the free fermionic action, is supersymmetric with our prescription.

We shall exploit this fact below.

Although discarding divergent terms is just a devise to save work in the cases in

which they eventually cancel [20, 21], we note that, as with other regularizations, one must

be careful in identifying the divergent δ(0)’s, so as not to leave a finite remnant which

could lead to inconsistencies or to broken symmetries. In this regard, and as another

– 6 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
6

example of our renormalization scheme, we have shown in appendix B that our prescription

reproduces the correct results in the vector field formulation of the five-dimensional Green-

Schwarz mechanism, which was studied in [22].4 On the other hand, throwing away these

divergences does have physical content in truly divergent situations, where it amounts to

a renormalization.

Analytic renormalization allows us to eliminate many operators in the effective action

using field redefinitions. Consider for instance a kinetic Lagrangian for fermions with

general (lowest-order) brane terms at one of the fixed points:

L = (1 + aLδ0)χ̄Li6∂χL + (1 + aRδ0)χ̄Ri6∂χR −
1

2
(1 + bLδ0)(χ̄L∂5χR + (∂5χ̄R)χL)

+
1

2
(1 + bRδ0)(χ̄R∂5χL + (∂5χ̄L)χR) , (3.1)

with δ0 = δ(x5) and χL,R the left-handed and right-handed chiral projections of five-

dimensional (four-component) Dirac spinors. The brane kinetic terms with derivatives

normal to the branes (“orthogonal” brane terms), with coefficients bL,R, give rise to thin-

brane singularities in the classical propagator [12]. Performing a field redefinition χc = hcψc

with hc = (1 + bL+bR

2 δ0)
− bc

bL+bR and c = L,R, the free Lagrangian is written as

L = (1 + aLδ0)h
2
Lψ̄Li6∂ψL + (1 + aRδ0)h

2
Rψ̄Ri6∂ψR − ψ̄L∂5ψR + ψ̄R∂5ψL . (3.2)

We have traded the orthogonal brane kinetic terms for parallel brane kinetic terms (those

without normal derivatives) times singular expressions. This makes the divergences associ-

ated to orthogonal brane terms apparent. But with analytic renormalization, (3.2) reduces

to

L = (1 + āLδ0)ψ̄Li6∂ψL + (1 + āRδ0)ψ̄Ri6∂ψR − ψ̄L∂5ψR + ψ̄R∂5ψL , (3.3)

with āc = ac−bc, which contains only non-singular parallel brane terms. This is equivalent

to performing the first-order field redefinitions of ref. [12] and discarding all the higher-order

terms that are generated.

4. KK decomposition of renormalized effective theories

Next we write down general free effective Lagrangians for massless fermions, scalars and

gauge bosons to order Λ−2 and perform the KK reduction to the same order. We impose

4D Lorentz invariance in the directions parallel to the branes. We also impose the full

5D Lorentz invariance in the bulk at zeroth order5 but allow for its breaking in higher-

order bulk operators. This is necessary to describe ultraviolet completions breaking this

symmetry, such as deconstruction, and can be useful in model building [23]. In the following

we will refer to the brane terms, i.e. to operators with a delta function, as odd-odd when

they involve products of odd functions and as even-even otherwise. The operators are

4We thank the referee for bringing our attention to this reference and suggesting this test.
5Note that this is automatic in the free theory if there is only one particle, as can be seen by a redefinition

of the coordinate y.
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always invariant, so the number of odd factors must be even. Note that odd-odd operators

are ambiguous. As we shall see in the next subsections, they do not contribute to second

order. We discuss their impact on higher-order corrections in section 6.

4.1 Fermions

In the fermionic case we also allow for operators proportional to the background σ(y) =

sign(y), because they can mimic the effect of a Wilson term in deconstruction, and for a

breaking of chiral invariance (without masses). The free fermion Lagrangian can be written

as Lf = L
(0)
f + 1

ΛL
(1)
f + 1

Λ2L
(2)
f + · · · , where

L
(0)
f = ψ̄(i6∂ − γ5∂5)ψ , (4.1)

L
(1)
f = κ1σ(∂5ψ̄)∂5ψ + aR

I δI ψ̄Ri6∂ψR + aL
I δI ψ̄Li6∂ψL , (4.2)

L
(2)
f = κ2ψ̄L∂3

5ψR + ξIσδI(∂5ψ̄L)∂5ψR + ηL
I σδI ψ̄L∂2

5ψR + ηR
I σδI ψ̄R∂2

5ψL + h.c. . (4.3)

Here, 6∂ = ∂µγµ, δI = δ(y − RI), with I = 0, π labelling the positions of the fixed points,

and sums over repeated indices I are understood. We choose ψR (ψL) to be even (odd)

under the orbifold parity. All the parameters, except Λ, are dimensionless. Several possible

operators have been eliminated by integration by parts, use of the zeroth-order equations

of motion (or equivalently, perturbative field redefinitions) and analytic renormalization.

The values κ1 = κ2 = 0 correspond to 5D Lorentz invariance in the bulk. We have chosen

a basis of operators which leads to a convenient KK reduction, such that the resulting 4D

theory has no higher-derivatives in the kinetic term. Indeed, if we expand ψL,R(x, y) =
∑

n fL,R
n (y)ΨL,R n(x) and take fL,R

n , mn to be the eigenvectors and eigenvalues of the

generalized eigenvalue problem

[

− ∂5 +
κ1

Λ
∂5σ∂5 +

κ2

Λ2
∂3

5

]

fL
n = mn(1 +

aR
I

Λ
δI)f

R
n ,

[

∂5 +
κ1

Λ
∂5σ∂5 −

κ2

Λ2
∂3

5

]

fR
n = mnfL

n , (4.4)

with normalization

1 =

∫ πR

−πR
dy

(

1 +
aR

I

Λ
δI

)

(fR
n )2 =

∫ πR

−πR
dy (fL

n )2 , (4.5)

the free Lagrangian reduces to

Lf =
∑

n

Ψ̄n(i6∂ − mn)Ψn , (4.6)

with Ψn = ΨL n + ΨRn, and ΨL n̄ = 0 (ΨR n̄ = 0) for possible right-handed (left-handed)

modes with mn̄ = 0. In writing the eigensystem (4.4) we have used the fact that the terms

in the action with coefficients aL
I , ξI , ηL

I and ηR
I do not contribute to second order, as they

vanish when the (continuous) zeroth-order wave functions are used. Then, to second order

we can safely work with strict delta functions and the calculation is straightforward: at

each order we solve the bulk equation and apply the boundary (“jump”) conditions found

by integrating around the fixed points.
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Expanding the KK masses and wave functions in 1/Λ we find a flat right-handed zero

mode plus a tower with KK masses

mn =
n

R

[

1 + A
1

RΛ
+ (A2 + Bn2)

1

(RΛ)2

]

+ · · · , (4.7)

where A = −
aR
0

+aR
π

2π , B =
κ2
1

2 + κ2 and n = 1, 2, . . . The structure of (4.7), with a piece

proportional to n depending on a single number A and another piece proportional to n3,

which appears at second order, is a consequence of the symmetries we have imposed on

the effective Lagrangian, of the fact that the expansion in local operators is controlled by a

single scale Λ, and of analytic renormalization, which does not mix up this ordering. The

wave functions of massive modes in the fundamental region have the structure

f c(y) = P c
1 (y) cos

( n

R
y
)

+ P c
2 (y) sin

( n

R
y
)

, (4.8)

with P c
1,2 polynomials of second degree (to second order in Λ−1). Here we write them to

first order only:

PR
1 (y) = N0 + N1

1

RΛ
,

PR
2 (y) = −N0

n

RΛ

(

aR
0

2
+ A

y

R

)

,

PL
1 (y) = −N0

n

RΛ

(

aR
0

2
+ κ1 + A

y

R

)

,

PL
2 (y) = −N0 − N1

1

RΛ
, (4.9)

with N0 and N1 perturbative normalization constants. Observe that the parameter κ1

only appears in the KK masses in the combination
κ2
1

2 + κ2 to second order. On the other

hand, the first-order wave function for the left-handed component depends on κ1 but not

on κ2; therefore, the operator with coefficient κ1 is not redundant. The wave functions also

distinguish aR
0 from aR

π at first order.

4.2 Scalars

For a massless complex scalar, after integration by parts, field redefinitions and analytic

renormalization, the effective Lagrangian to second order reads Ls = L
(0)
s + 1

ΛL
(1)
s + 1

Λ2L
(2)
s +

· · · , with

L(0)
s = φ†(−¤ + ∂2

5)φ , (4.10)

L(1)
s = aIδIφ

†¤φ − cIδI(∂5φ
†)∂5φ , (4.11)

L(2)
s = κφ†∂4

5φ , (4.12)

and ¤ = ∂µ∂µ. We have not included terms proportional to σ in the scalar case, as they

are not required to reproduce the results in deconstruction. A possible orthogonal brane

kinetic term bIδIφ
†∂2

5φ + h.c. has been absorbed into the a-term, using field redefinitions
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and analytic renormalization. If 5D Lorentz invariance is preserved in the bulk, then

κ = 0. The KK reduction is performed by expanding φ(x, y) =
∑

n fn(y)Φn(x) with fn the

eigenfunctions of the eigenvalue problem

Osfn = −m2
n(1 + aIδI)fn , (4.13)

normalized as

1 =

∫ πR

−πR
dy (1 + aIδI)f

2
n . (4.14)

The operator in (4.13) is Os = ∂2
5 + cI

Λ ∂5δI∂5 + κ
Λ2 ∂4

5 . Using analytic renormalization it

is possible to reduce this problem to a fermionic one. Indeed, after renormalization, the

“supersymmetric” operator Õs = −O†
fOf , with Of = −(1+ cI

2ΛδI)∂5−
κ

2Λ2 ∂3
5 , is identical to

Os, to second order. On the other hand, if f1n, f2n and mn are solutions of the fermionic

eigensystem

O†
ff2n = mn(1 + aIδI)f1 n ,

Off1n = mnf2 n , (4.15)

then fn = f1n and mn are obviously solutions of Õsfn = −m2
n(1 + aIδI)fn, and hence

of (4.13). Finally, by field redefinitions and analytic renormalization, we can eliminate the

derivatives of delta functions and reduce (4.15) to (4.4) with aL
I = aI , aR

I = −cI , κ1 = 0

and κ2 = −κ/2. The role of f1n is played by fL
n . Therefore, the results obtained above give

the KK decomposition of an odd scalar. In particular, there is no zero mode. For an even

scalar we can change Of → O†
f above, which leads to f1n = fR

n and parameters aL
I = −cI ,

aR
I = aI , κ1 = 0 and κ2 = −κ/2.

We find that the KK masses are given by (4.7) with A = −a0+aπ

2π for an even scalar,

A = c0+cπ

2π for an odd one, and B = −κ
2 in both cases. Note that the terms with coefficients

cI give a non-trivial contribution for odd scalars, despite the fact that they do not contribute

when treated non-perturbatively without renormalization [12, 24]. The wave functions also

follow directly from the fermionic ones fL,R
n in (4.8) and (4.9), using the same particular

values for the fermionic parameters.

4.3 Gauge bosons

The case of gauge bosons is a special case of the scalar one when the gauge A5 = 0 is

chosen. The main difference is that the most singular brane terms are forbidden by gauge

invariance, but after analytic renormalization the free Lagrangians are equivalent. Indeed,

after some field redefinitions the most general gauge kinetic Lagrangian to second order is

Lg = L
(0)
g + 1

ΛL
(1)
g + 1

Λ2L
(2)
g + · · · , with

L(0)
g = −

1

4
FµνFµν −

1

2
Fµ5F

µ5 , (4.16)

L(1)
g = −

1

4
aIδIFµνFµν −

1

2
cIδIFµ5F

µ5 , (4.17)

L(2)
g = −

1

2
κFµ5∂

2
5Fµ5 , (4.18)
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which, upon writing FMN = ∂[MAN ] and putting A5 = 0, is identical to the real-scalar

version of (4.12), with φ → Aµ. Therefore, the KK reduction of Aµ gives the same expres-

sions.

5. Matching with fundamental theories

These results in the effective theory should agree with those obtained from a more fun-

damental theory in which the physics around the fixed points is non-singular. This is the

case of weakly coupled string theory, where the extended nature of the strings softens the

orbifold singularities. In perturbative string theory on an orbifold, some of the contribu-

tions of string loop corrections to a given correlation function are localized around the

fixed points. These contributions are suppressed by powers of the string coupling, and the

localization profile is controlled by the string length ls, which is the only dimensionful pa-

rameter at hand (we are assuming a large compactification radius, so that finite-size effects

are small). Therefore, even if we start with unresolved orbifolds with ε0 = 0, effectively

this is smeared to ε0 ' ls. These calculations have been performed explicitly for localized

gauge-field tadpoles in heterotic string theory in [25] (see also [26]–[29]). Even if the corre-

sponding result in field theory is non-singular, these calculations illustrate how an effective

brane thickness is generated by the stringy dynamics near the fixed point, in agreement

with our dimensional analysis (in fact, a dimensionless factor arising from normal-ordering

constants in the world-sheet field theory turns out to be crucial as well). We refer to [30]

for details about the analogies and differences in the string and field-theory calculations.

It is plausible that a similar mechanism will also regulate quantities which in field theory

contain thin-brane singularities. Other “fundamental theories” in which the physics around

the fixed points is smooth are the field-theoretical orbifold resolutions of [31], which should

be regarded as effective theories valid up to a cutoff Λ0 larger than the inverse size of the

resolved fixed points, ε−1
0 . In this case, there can be localized terms involving the curvature

and the flux backgrounds.

To be more quantitative, we compare the renormalized effective theory with another

ultraviolet completion: a deconstructed version [32, 33] of the orbifold S1/Z2. Decon-

structed orbifolds were introduced in [33] (in the fundamental region) and will be studied

in greater detail in [1] (starting from the parent theory space). They are renormalizable 4D

theories in which the gauge group is formed by a product of identical simple groups, with

“link” scalar fields charged under “neighbouring” pairs of group factors. Below the scale of

the vacuum expectation value of the link scalars v, they are equivalent to 5D field theories

whose fifth dimension is a latticized segment. The lattice spacing is s = (gv)−1, with g a

dimensionless coupling, and the radius R of the discrete S1 is given by πR = Ns, where

N is the number of sites in the segment (the fundamental region). Scalar and fermion

fields can also be added at each site to represent bulk scalars and fermions. We use Wil-

son fermions to avoid doubling, and fine-tune the parameters in such a way that chiral

invariance is recovered in the continuum limit. The sites near the boundary of the interval

behave differently from those deep inside the bulk, and localized terms are generated by

quantum corrections, with coefficients independent of s and N . In this scenario, the fixed
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points (boundaries) are described by Kronecker, rather than Dirac, deltas. The effect of

the brane tems is thus regulated by the lattice spacing, which acts as a cutoff in position

space. Therefore, we effectively have ε0 = Λ−1
0 ≡ s. In deconstruction, KK reduction

amounts to a diagonalization of the mass matrix arising from the discrete kinetic term.

The deconstructed orbifold theory can be described at energies below Λ = 1/s by a (clas-

sically) renormalized effective theory in a continuous orbifold with cutoff Λ. This means,

in particular, that the KK masses and the discrete wave functions agree with the general

ones we have found here. To see this, we must expand them to second order in a Taylor

series about s = 0, keeping R fixed. Let us summarize the results.

For massless fermions, gauge bosons, massless odd scalars and generic massless even

scalars, we find the following KK masses to second order [1]:

mn =
n

R

[

1 + A
s

R
+

(

A2 −
n2π2

24

)

( s

R

)2
]

+ · · · , (5.1)

where the value of A depends on the kind of field and is a function of the coefficients of

different operators near the fixed points in the deconstructed theory. For even gauge bosons

and a fine-tuned class of even scalars — in which certain combinations of brane coefficients

are put to zero — there is a flat zero mode. On the other hand, for generic even scalars

the zero mode disappears and we find instead two tachyons, one localized at each brane.

Their mass is proportional to the inverse spacing. For fermions there is a flat chiral zero

mode; in some deconstructed orbifolds, there is in addition one zero mode localized at one

of the branes, which has the same chirality as the bulk mode for “chiral” deconstructed

orbifolds, and opposite chirality for “non-chiral” orbifolds. To next-to-leading order, the

wave functions for massive KK modes of (Z2-even) right-handed massless fermions, even

gauge bosons and fine-tuned even massless scalars read

f (1)
n =

(

N ′
0 + N ′

1

s

R

)

cos
(ny

R

)

− N ′
0

n

RΛ

(

C1 + A
y

R

)

sin
(ny

R

)

, (5.2)

where y = is and i labels the sites. On the other hand, the wave functions of the corre-

sponding (odd) left-handed fermions and of odd gauge bosons, odd massless scalars and

generic even massless scalars are

f (2)
n = −N ′

0

n

RΛ

(

C2 + A
y

R

)

cos
(ny

R

)

−
(

N ′
0 + N ′

1

s

R

)

sin
(ny

R

)

. (5.3)

Here, N ′
0,1 are normalization constants and A is the same expression (for each case) as

appears in the masses.

All these results can be reproduced by the renormalized effective theories in the con-

tinuum. Indeed, eq. (5.1) neatly matches the generic expression (4.7) and the first-order

deconstructed wave functions above have the same form as the ones in (4.8) and (4.9).

Adjusting the parameters of the effective Lagrangians, we find exact agreement for KK

masses and the corresponding wave functions in each case. The exact values in terms of

the parameters of the different deconstructed models will be given in [1]. Finally, the local-

ized zero modes and tachyons can be described directly in the effective theory by massless

and tachyonic fields, respectively, living on the branes.
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Interestingly enough, it turns out that the deconstructed generic even scalars are de-

scribed by odd scalars (plus the brane tachyons) in the effective theory. This is due to the

presence of discrete brane operators, which look like irrelevant from näıve power count-

ing, but turn out to be relevant and change drastically the continuum limit. Hence, these

theories belong to the same universality class as that of deconstructed odd scalars, except

for the brane instability. When these operators are put to zero, the theory stays in the

universality class one would have näıvely guessed. An alternative effective description is

to use even scalars and add tachyonic boundary masses of the order of Λ. These are Dirac

delta well potentials, which localize one mode — the tachyon — at each brane. The re-

maining KK modes are expelled from the branes by orthogonality.6 Even though changing

the parity of the field is simpler, the description of this effect by explicit relevant operators

has several advantages. First, their behaviour under important symmetries can be studied.

Second, their coefficients are dimensionful, and thus naturally of the order of the cutoff.

This shows that effective Dirichlet boundary conditions for even scalars are natural. Third,

the coefficients can be fine-tuned to be much smaller than the cutoff, in order to reproduce

the fine-tuned scenario with effective Neumann boundary conditions. And fourth, their

running in the effective theory can be studied with standard methods.

It might be thought that the non-decoupling effects should be related to the instabil-

ities. However, there are stable examples in which this change of boundary conditions in

the infrared is observed. For instance, in the non-chiral class of deconstructed fermions, if

we do not fine-tune the mass and Wilson term near the boundaries (as has been assumed

so far), both zero modes combine to form a massive Dirac mode [1]. The full set of KK

masses is then given by

mn =
n + 1/2

R

[

1 + B
s

R
+

(

B2 −
(n + 1/2)2π2

24

)

( s

R

)2
]

+ · · · , (5.4)

while the wave functions of the right-handed fermion are

f (3)
n =

(

N ′
0 + N ′

1

s

R

)

cos

(

(n + 1/2)y

R

)

− N ′
0

n + 1/2

RΛ

(

C3 + B
y

R

)

sin

(

(n + 1/2)y

R

)

, (5.5)

to first order. The same form of the masses and wave functions, plus one localized tachyon,

is obtained for deconstructed even scalars with the mentioned operators adjusted to zero

only near the boundary y = 0. This behaviour can be precisely matched to an effective

theory in which different boundary conditions are used at the two boundaries for each chiral

component (Neumann-Dirichlet at lowest order). In the orbifold formalism in the “parent”

space, this can be achieved by allowing for a twist such that the field has antiperiodic

boundary conditions, or equivalently, using an orbifold S1/(Z2×Z ′
2). As in the scalar case,

an alternative description preserving the original parity of the fields is possible, if relevant

operators are included. Specifically, the operator doing the job is a mass mixing between

6A big non-tachyonic boundary mass also gives rise to Dirichlet boundary conditions but does not localize

any mode.
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the right-handed bulk fermion and a left-handed localized mode at one of the branes (which

was present in the purely massless case). Its coefficient has mass dimension 1/2, and is

naturally of order Λ1/2. This operator, which breaks the chiral invariance of the bulk

fermion, mimics faithfully the physical mechanism involved in the change of the continuum

boundary conditions of the deconstructed theory. More details will be given in [1].

6. Odd-odd operators

We have seen that operators containing a delta function times a product of odd functions

(odd-odd brane terms) do not have any effect to second order in the effective theory. The

same holds in deconstruction, but these terms start contributing at third order in s. If we

want to reproduce this effect with odd-odd terms in the effective theory we need to define

the convolution of delta functions and discontinuous functions. We can perform a formal

calculation by treating the value of fR
n at y = 0, πR as independent from the corresponding

limits and with the prescription that for discontinuous functions g,

∫

dy δ(y − y0)g(y) =
c

2

(

lim
y→y+

0

g(y) + lim
y→y−

0

g(y)

)

+ (1 − c)g(y0) , (6.1)

with 0 < c < 1. Then, we find boundary conditions from the even equation in the usual

way, but using (6.1). On the other hand, we multiply the odd equation by a periodic sign

function σ (with σ(0, πR)=0) and integrate around y = 0, πR, using again (6.1). This

gives a second pair of boundary conditions relating fR
n (0, πR) with the limits of fR

n , which

allows to write boundary conditions in terms of the limits of fR
n and fL

n only. In this way,

we find that the third-order contribution to the fermion KK masses of the (odd-odd) terms

proportional to aL
0,π is

−c
n3

8πR4Λ3

[

(aR
0 )2aL

0 + (aR
π )2aL

π

]

. (6.2)

Note that the numerical coefficient is regularization dependent. This is not a problem, as

this dependence can be absorbed into the renormalized couplings aL
I . In order to justify

this formal computation, we look now at the calculation with an explicit regulator. If

we introduce a dimensionful regulator, we must be careful that it do not mix with the

expansion in Λ and reintroduce the thin-brane singularities. We have found explicitly

that the “point-splitting” regulator introduced in [34] does not have this problem. This

regularization consists in shifting the support of the delta functions a distance ε away from

the fixed points, performing the calculations and taking ε → 0 at the end. To deal with the

discontinuous functions at ε we use the prescription (6.1) with c = 1, which in particular

follows from the analytic regularization in the appendix.7 Then we find

−
n3

32πR4Λ3

[

(aR
0 )2aL

0 + (aR
π )2aL

π

]

, (6.3)

7In principle, we could just use the regularization in the appendix, without point splitting, but then we

would have to solve the equations of motion in a background involving polylogaritms, which is not an easy

task. On the other hand, setting c = 1 in the formal calculation above gives inconsistent equations, but it

is possible to take the limit c → 1 at the end.
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which coincides with (6.2) for c = 1/4. In any case, the contribution of aL
I in (6.2) vanishes

if aR
I (with the same I) does. The reason for this is that the odd-odd terms contribute

only when the fields are discontinuous at the branes, and this discontinuity is induced at

lower orders by aR
I . The dependence on n and R matches the one of the corresponding

contribution obtained in deconstruction. However, in this case the even-even brane terms,

which give rise to aR
I in the continuum, do not need to be turned on to have a non-vanishing

contribution of the third-order odd-odd term. The effective theory can also reproduce such

correction with aR
I = 0 by means of the third-order operator δI ψ̄R∂3

y ψ̄L, which gives a

contribution with the same R and n dependence as (6.2). This shows that, at least as far as

the KK masses are concerned, the operators with coefficient aL
I are redundant to third order.

One might speculate that this is a general property of the free effective theory, i.e. that

the effect of any odd-odd term, to all orders, can be absorbed into higher-order even-even

terms. We have not found a field redefinition showing this, and in fact field redefinitions

preserving the orbifold parity will not mix odd-odd with even-even operators. However

the possibility that odd-odd terms be redundant agrees with the idea that the free brane

operators simply determine the boundary conditions outside the core of the brane [11], and

an arbitrary boundary condition can be imposed by adjusting the value of the even-even

operators. From this argument, however, it does not follow that the correct dependence on

the KK number at each order will be reproduced. On the other hand, in the interacting

effective theory the odd-odd operators run in general with the renormalization group scale,

and this running would have to be incorporated into the even-even operators. This would

require an explicit relation between even-even and odd-odd operators. These issues deserve

further study.

7. Conclusions

We have argued, and showed explicitly in particular models, that effective theories in extra-

dimensional spaces with infinitely thin defects are a good description of more fundamental

theories in which the defects can have some structure. A renormalization procedure is

necessary to take care of the divergences which appear in the thin-brane limit and we have

proposed a simple renormalization prescription for plane branes of codimension 1, analytic

renormalization, which defines these divergences as vanishing. We have shown that, in

this scheme, even-even orthogonal brane kinetic terms can be completely eliminated by

a field redefinition. Odd-odd parallel and orthogonal terms can also be disregarded to

second order and maybe higher. As a matter of fact, only even-even parallel brane kinetic

terms (besides mass brane terms) are customarily taken into account in phenomenological

fits [35]–[41] and model building [42]–[46]. Our results imply that, in the framework of

a classically renormalized effective theory, this is consistent and does not entail a loss of

generality. Moreover, it agrees with completions such as deconstructed orbifolds. The

less common works including orthogonal terms use fat branes [47] or treat the orthogonal

brane terms perturbatively to first order [9], which is non-singular. The first possibility

reduces to the bare effective theory at scales lower than the physical width of the branes.
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Regarding the second one, we have shown that the first-order results in [9] are not spoiled

by divergent higher-order contributions if perturbative renormalization is implemented.

It should be observed that all our results are perturbative in the derivative expansion

and assume that dimensionless couplings are of order 1. However, parallel brane kinetic

terms with coefficients larger than R are often invoked. This puts the theory in a non-

perturbative regime. Even though the effect of the large parallel kinetic terms (of first order,

formally) can be resummed to all orders, the result may be changed by contributions of

higher-order operators, which can be of the same size in principle. It can still be assumed

that all higher-order terms vanish or have small coefficients, although this choice is not

protected by any symmetry. From this point of view, the calculations with small brane

terms, as those in universal extra dimensions [9, 48], are more robust.

On the other hand, we have seen in explicit examples that the renormalized effective

formalism can also describe, perturbatively, scenarios in which the infrared behaviour is

abruptly changed when certain operators in the fundamental theory are turned on. This

effect is reproduced in the effective theory by relevant operators, with coefficients which

are naturally of the size of the cutoff — but can be smaller if the symmetry is enhanced

when they vanish. We remark that similar effects would be produced by certain irrelevant

operators in the effective theory at the regularized level, if the divergences were not sub-

stracted. From this point of view, classical renormalization in a mass-independent scheme

can be understood as a reorganization of the effective theory, such that the impact of each

operator is controlled by the size of its coefficient. This allows us to work at a fixed order

consistently, since the contribution of higher-order operators to a given observable is guar-

anteed to be smaller (as long as their dimensionless coefficients are of order 1). On the

other hand, the relevant operators can be alternatively represented by different orbifold

field transformations (or boundary conditions), at least at the classical level.

In this paper we have focussed on the free local sector of effective theories and their

deconstructed completions, although we have in mind the possibility that some of the op-

erators may be partially or fully induced by quantum corrections when interactions are

included. Before concluding, let us make a few comments on the interactive theory. As

long as a complete set operators is included in the effective theory, we should be able

to reproduce the interactions of completions such as the deconstructed models. The tree

graphs will have in general new thin-brane singularities, which can be subtracted with

analytic renormalization. Odd-odd terms appear too, and can be treated as discussed

above.8 In [6, 7] complete quantum computations in renormalizable field theories of di-

mension 4 with boundaries have been performed, and the corresponding renormalization

group equations have been studied. The techniques in these references can be applied to

theories of dimension higher than 4, although in this case the singularities will be more

severe and more counterterms will be required because of non-renormalizability. There

are many examples of loop calculations in extra dimensions with branes in the litera-

ture. See for instance [8, 9, 21, 48 – 52]. At the quantum level, one must take care of

8Bulk higher-derivative operators giving rise to singularities and ill-defined products can be redefined

away using the classical equations of motion, as shown in [11].
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the usual “quantum” UV divergences at coincident points, which can be divided into bulk

and brane-localized divergences, and also of the thin-brane “classical” divergences we have

been discussing so far. In our perturbative effective framework, the quantum divergences

should also be treated in a mass-independent renormalization scheme, such as dimensional

regularization with minimal subtraction, so that the renormalization scale µ only appears

inside logarithms, and does not interfere with the counting of powers of Λ. In this case,

the localized quantum divergences are proportional to exact delta functions and can be

cancelled by brane counterterms in the effective theory with vanishing brane width [6 – 8]

(for examples showing the smooth profile of divergences with a hard cutoff, see [49, 53]).

The thin-brane divergences, on the other hand, which appear typically in one-particle

reducible (sub)diagrams, can be subtracted using our prescription. In general, the per-

turbative renormalization of both classical and quantum divergences in extra-dimensional

theories with branes can be organized along the lines of appendix B in [6]. Finally, if a

matching with a fundamental theory is performed, this should be carried out, as usual, at

a renormalization scale µ = Λ. Then, the renormalization group equations of the effective

theory can be used to calculate processes at lower energies.
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A. Explicit regularization

Here we give one example of analytic regularization which naturally leads to our renormal-

ization prescription, Πm
j=1δ

(nj)(0) = 0 for m ≥ 1 (with the superscripts nj ≥ 0 indicating

the order of the derivatives), without any explicit substraction. First, we observe that,

in the noncompact case, any regularization by analytic continuation of an adimensional

parameter must give a vanishing result for δ(0) and similar integrals, just for dimensional

reasons.9 However, in the compact case we can use the compactification radius to build

dimensionless quantities, and different results are possible. In general, divergences will

appear in the limit in which the regulator is removed, and a renormalization prescription

(such as minimal substraction of poles, for instance) must be supplied to substract them.

In the regularization we propose below, these integrals not only are finite, but they actually

vanish. This simplifies the calculations, for one does not have to worry about finite parts

arising from cancellations of poles and zeros.

9In the case of dimensional regularization, there is no value of the complex dimension for which integrals

like
R

dk k−n converge, and a vanishing value is assigned by definition. Nevertheless, it is possible to

generalize the regularization so that a finite region exists for which the integral converges [54]. Then,

analytic continuation gives indeed a vanishing value.
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Let us parametrize the extra-dimensional coordinate, in the compact covering space,

by the dimensionless coordinate x = y/R ∈]− π, π]. Consider the following representation

of the delta function,

δt(x) =
1

2π

[

1 + Lit(e
ix) + Lit(e

−ix)
]

, (A.1)

where Li is the polylogarithm [55], which is defined for complex numbers t and z with

|z| < 1 by

Lit(z) =

∞
∑

k=1

zk

kt
. (A.2)

Its definition for |z| ≥ 1 follows uniquely via analytic continuation. For a generic fixed t,

the polylogarithm is multi-valued. We choose the principal branch with Lit(z) real for z

real, 0 ≤ z ≤ 1, and continuous except for a cut along the real axis from z = 1 to z = ∞.

The discontinuity across the cut is

Lit(z + i0+) − Lit(z + i0−) = 2i
π(log z)t−1

Γ(t)
, (A.3)

for real z ≥ 1, where the logarithm is evaluated in its principal branch with −π < arg(z) ≤

π.

For fixed t with Re(t) > 1, the function δt(x) is continuous in x ∈] − π, π]. When

0 < Re(t) ≤ 1, there is an integrable singularity at x = 0 (logarithmic for t = 1). The

indefinite integral of the regularized delta can be computed for any t:

∫

dx δt(x) =
1

2π

[

x + iLit+1(e
ix) − iLit+1(e

−ix)
]

. (A.4)

Hence, δt satisfies
∫ π

−π
δt(y) = 1 . (A.5)

Of course, the same result can be obtained directly from the corresponding contour integral.

On the other hand, δ0(x) = 0 if x 6= 0, so δt goes to a Dirac delta function as t → 0. Then,

we define the integral of a test function times a delta by the analytic continuation to t = 0

of the integral evaluated for Re(t) > 0. For well-behaved test functions, this just gives the

value of the function evaluated at x = 0. For a test function discontinuous at x = 0 it also

gives a definite result:

∫ a

−a
ϕ(x)δ(x) =

1

2

(

lim
x→0−

ϕ(x) + lim
x→0+

ϕ(x)

)

, (A.6)

with 0 < a ≤ π. This provides a simple prescription to handle discontinuous functions,

which arise often in the presence of brane terms. The n-th derivative of the regularized

delta is

δ
(n)
t (x) =

in

2π

(

Lit−n(eix) + (−1)nLit−n(e−ix)
)

. (A.7)

It is continuous in ] − π, π] when Re(t) > 1 + n. To convolute δ(n) with a test function,

it is sufficient to take Re(t) > n. Alternatively, if the test function can be differentiated n
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times, we can simply integrate by parts, as in the formal definition of the n-th derivative

of the delta function.

When products of delta functions occur, we extend our definition to

∫ b

a
dx

[

Πm
j=1δ

(nj )(x)
]

ϕ(x) = lim
t→0

∫ b

a
dx

[

Πm
j=1δ

(nj )
t (x)

]

ϕ(x) , (A.8)

where lim indicates the analytic continuation from sufficiently large Re(t).

For Re(t) > 1, we can use (A.2) to write (A.1) as

δt(x) =
1

2π

∞
∑

k=−∞

e−ikxξt(k) , (A.9)

with ξt(k) = |k|−t if k 6= 0 and ξt(0) = 1. This is just a zeta-function regularization [56 – 58]

of the Fourier series of the delta function. In this representation, the regularization allows

to interchange the sum and integral signs, so that

∫ π

−π
dx δt(x)ϕ(x) =

1

2π

∞
∑

k=−∞

ξt(k)ϕ̂(k) , (A.10)

where ϕ̂ is the Fourier transform of ϕ. If the sum in the r.h.s. of (A.10) is convergent

for t = 0, we can remove the regularization before performing the sum, and again we see

that we recover the Dirac delta. Doing the exact sum corresponding to the integral of the

regularized δ2, we obtain

∫ π

−π
dx δt(x)2 =

1

2π

∞
∑

k=−∞

ξt(k)2

=
1

2π
(1 + 2ζ(2t)) , (A.11)

with ζ the Riemann zeta function. Continuing to t = 0 and using ζ(0) = −1/2, we find
∫ π
−π δ(y)2 = 0. In fact, this result can be found from the position space representation in a

more formal way:

∫ a

−a
dx δt(x)2 →

∫ a

−a
dx δt(x)δ(x)

= δt(0)

=
1

2π
(1 + 2ζ(t)) , (A.12)

which again gives 0 at t = 0. In the first line we have taken t = 0 in one of the deltas and

kept Re(t) > 1 in the other. This trick, which is equivalent to exchanging the limit and the

sum in the Fourier representation, works because δt(x) is well behaved when Re(t) > 1. In

the same way, taking t = 0 in one of the deltas before performing the integration, we find

∫ a

−a
δ(x)mϕ(x) = 0 , m ≥ 2 . (A.13)
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Moreover, for Re(t) > n + 1,

δ
(n)
t (0) =

{

ζ(t−n)
π , n even,

0 , n odd.
(A.14)

Since ζ(t) vanishes at negative even integers, the analytic continuation to t = 0 gives

δ(n)(0) = 0. More generally, for any a and b,

∫ b

a

[

Πm
j=1δ

(nj )(x)
]

ϕ(x) = 0 , m ≥ 2 . (A.15)

B. Vector formulation of 5D Green-Schwarz mechanism

As a further test of our renormalization scheme, and to illustrate how it can be used to sim-

plify calculations in which the thin-brane singularities cancel, we compute the spectrum of a

theory describing a five-dimensional Green-Schwarz (GS) mechanism in the vector formula-

tion [22]. The five-dimensional GS mechanism can be described in two dual formulations,

using tensor and vector fields, respectively. The former is explictly free of singularities,

whereas the latter has δ(0) terms at intermediate steps of the calculation. They must

cancel out in the final results, in such a way that the physical observables agree in both

descriptions. One can then use this duality to test the regularization of the singular terms,

as has been done in [22]. In this appendix, we show that our prescription of renormalizing

the singularities to zero does give the correct result for the spectrum, without the need of

an explicit regularization.

The relevant Lagrangian, at the quadratic level, reads

L = −
1

4
FMNFMN −

1

4
FMNFMN +

∑

I

δIξI(A
µFµ5 −

1

2
ξIδIAµAµ), (B.1)

where Aµ and A5 (A5 and Aµ) are even (odd) fields under the Z2 parity. Note that the

normalization of the delta functions is different from the one in [22], as we work in the circle

picture rather than the interval one. Following our prescription, we set to zero the last term

in the parentheses, which contains δ(0). If other δ2 terms appear during the calculation

they will also be dropped in a consistent way. We now take the gauge ∂µAµ + ∂5A5 = 0

and ∂µAµ + ∂5A5 = 0 to decouple the µ from the 5 components of the gauge fields and

introduce the following KK expansion

Aµ(x, y) =
∑

n

fn(y)A(n)
µ (x), (B.2)

Aµ(x, y) =
∑

n

gn(y)A(n)
µ (x). (B.3)

The resulting equations of motion for the different modes read

(∂2
5 + m2

n)fn = δIξI∂5gn, (B.4)

(∂2
5 + m2

n)gn = −ξI∂5(δIfn), (B.5)
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where we have denoted by mn the eigenvalue of the four-dimensional momentum. The

solution to the singular part of eq. (B.5) is

∂5gn = −ξIδIfn, (B.6)

which can be integrated around the orbifold fixed points to give the boundary conditions

gn(0+) = −
ξ0

2
fn(0), (B.7)

gn(πR−) =
ξπ

2
fn(πR). (B.8)

Now the singular part of eq. (B.4) reads

∂2
5fn = δIξI∂5gn = δIξI(−ξIδIfn + ∂5ĝn) → δIξI∂5ĝn, (B.9)

where in the second equality we have used eq. (B.6) and have defined ∂5ĝn ≡ ∂5gn(πI+)

as its regular part, and in the last equality we have used our prescription to drop the term

proportional to δ(0). Again, this equation can be integrated around the orbifold fixed

points to give the second set of boundary conditions,

∂5fn(0+) =
ξ0

2
∂5gn(0+), (B.10)

∂5fn(πR−) = −
ξπ

2
∂5gn(πR−). (B.11)

The full solution is then given by the solution of the bulk equations,

fn = An cos(mny) + Bn sin(mny), (B.12)

gn = Cn cos(mny) + Dn sin(mny), (B.13)

subject to the four boundary conditions, eqs. (B.7), (B.8), (B.10), (B.11), which imply

0 =
ξ0

2
An + Cn,

0 = Bn −
ξ0

2
Dn, (B.14)

0 =
ξπ

2
cos(mnπR)An +

ξπ

2
sin(mnπR)Bn − cos(mnπR)Cn − sin(mnπR)Dn,

0 = sin(mnπR)An − cos(mnπR)Bn +
ξπ

2
sin(mnπR)Cn −

ξπ

2
cos(mnπR)Dn.

Non-trivial solutions of this homogeneous system of equations satisfy the following eigen-

value equation

tan2(mnπR) =
1

4

(

ξ0 + ξπ

1 − ξ0ξπ/4

)2

, (B.15)

which fully agrees with the result on reference [22]. This should not come to a surprise

since, had we kept the explicit δ(0) terms, eq. (B.4) would have been replaced by

(∂2
5 + m2

n)fn = δIξI(∂5gn + ξIδIfn), (B.16)
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and, by virtue of eq. (B.6), the explicit singular terms proportional to δ(0) would have ex-

actly cancelled, as they should, and we would have ended with the same final (non-singular)

result. Just as an extra cross-check, we have solved the same eigenvalue problem with a

box regularization of the delta function and again the same result (explicit calcellation of

the δ2 terms and correct eigenvalue equation) was obtained after taking the width of the

regularized delta to zero.
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